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Abstract
We report a numerical study of crystal nucleation in a system of weakly charged
colloids. The interaction between the colloids is approximated by a repulsive
hard-core Yukawa potential. We studied the dependence of the nucleation
barrier and the nucleation rate on supersaturation as a function of both contact
value and range of the interaction potential. We find that, at the same volume
fraction, nucleation is much faster for these soft colloids than for hard spheres.
This is partly because fluid–solid coexistence in charged colloids occurs at
lower volume fractions than for hard spheres. But, in addition, the softness of
the potential has a pronounced direct effect on the nucleation barrier through
a lowering of the solid–liquid surface free energy. Moreover, the softness of
the potential directly affects the pathway for crystal nucleation: even when the
stable crystal phase has a face-centred cubic structure, we find that the initial
crystal nuclei have a bcc structure.

1. Introduction

When a suspension of monodisperse colloids is brought to a sufficiently high density, it will
form beautiful, iridescent crystals. The rate at which these crystals form depends strongly
on the steepness of the repulsive forces that act between the colloids. While it is difficult to
compare absolute nucleation rates in different colloidal systems under differing conditions,
experiments [1, 2] clearly indicate that charged colloids with a soft, long-ranged repulsion
tend to crystallize much faster than hard-sphere colloids at the same supersaturation. The aim
of the present paper is to elucidate the factors that affect the rate of crystal nucleation in a
system of weakly charged colloids.

In suspension, the charged colloids are surrounded by a cloud of counter-ions. This
counter-ion double layer screens the pure Coulomb interaction between the colloids. If we
use the linearized Poisson–Boltzmann equation to describe the charge distribution around a
charged colloid with hard-core diameter σ , then we obtain the following expression for the
pair interaction between two charged macro-ions:
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Figure 1. A plot of the hard-core Yukawa potential for κ = 5 as a function of the Yukawa repulsion
βε = 2, 6, 8, 20.

βU(r) =



∞ for r < σ

βε
exp(−κ(r/σ − 1))

r/σ
for r > σ .

(1)

U(r) is usually referred to as the ‘hard-core Yukawa potential’; see figure 1. Here κ is the
inverse screening length in units of the hard-sphere diameter σ and βε is the value of the Yukawa
repulsion at contact. β is a measure for the inverse temperature (β = 1/kB T ), where kB is the
Boltzmann constant. In the linearized Poisson–Boltzmann theory,we have explicit expressions
for both κ and ε in terms of the size and surface charge of the colloid,and of the concentration of
counter-ions and added salt. However, the linearized Poisson–Boltzmann description provides
only an approximation to the real colloid–colloid interaction. For instance, it is expected to
break down at short distances and for low added salt concentrations. A way to treat the
interaction between charged colloids at short distances was already proposed by Derjaguin,
Landau, Verweij and Overbeek (DLVO) in the 1940s [3]. Since then, several modifications of
the form of the pair potential between charged colloids have been proposed [4, 5] but, except
at very short distances, most expression are very similar to the hard-core Yukawa model. The
main difference between the theories is in the values that they yield for κ and ε. In the original
DLVO theory, these parameters depend only on the ionic strength of the solution and on the
bare charge of the colloids. In the more recent theories, κ and ε may themselves depend on the
concentration of charged colloids. In the present work, we simply assume that the interaction
between charged colloids is adequately described by a hard-core Yukawa potential. However,
we shall return later to the question of whether this is allowed. A special case of the hard-core
Yukawa model, is the hard-sphere model. The latter model applies in the limit of high salt
concentrations κ → ∞ and in the limit where the strength of the repulsion is much less than
the thermal energy, i.e. βε → 0. This is typically the case for weakly charged colloids. We
note that, whilst the hard-core Yukawa model is commonly used to describe slightly charged
colloids, it can also be used as a crude model for sterically stabilized colloids. Hence, many
of the conclusions that we obtain below, in particular those for systems with a high value of κ ,
should equally apply to sterically stabilized, uncharged colloids.
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Figure 2. Calculated coexistence pressure from [6] for κ = 5 as a function of the Yukawa
repulsion βε.

The phase behaviour of the hard-core Yukawa potential has been calculated in detail
by numerical simulation [6]. In these calculations the parameters κ and βε were varied
independently. This cannot easily be done in experiments, as a variation in κ will change ε,
unless some other parameter, such as the charge of the colloid, is varied at the same time.

The computed phase diagram of [6] shows a fluid–solid (bcc/fcc) and a solid–solid (bcc–
fcc) coexistence line and it exhibits two fluid–bcc–fcc triple points (see figure 2). The main
difference between the phase diagram of the hard-core Yukawa model and that of the pure
(i.e. point-particle) Yukawa potential [7] is the presence of the second triple point. This triple
point sets a lower limit for the strength of the Yukawa interaction for which a bcc phase exists.

Extensive crystallization experiments have been performed on systems of uncharged,hard-
sphere colloids using time-resolved laser light scattering or microscopy [8–14]. For charged
colloidal systems, there are fewer studies of this kind [1, 15]. More recently, Gasser et al [16]
published a confocal microscopy study of homogeneous crystal nucleation in slightly charged
hard-sphere colloids. In addition, an extensive light-scattering study of crystallization in more
highly charged colloids has been performed by Schöpe [2, 17, 18].

In the present paper, we report a computer simulation study of crystal nucleation in a
hard-core Yukawa system. In these simulations, we have varied both the amplitude of the
Yukawa repulsion and the magnitude of the screening length and studied the effect of both
parameters on crystal nucleation.

2. Homogeneous nucleation

Crystal nucleation is an activated process. This implies that it costs free energy to form small
crystal nuclei in the supersaturated liquid. However, once a nucleus exceeds a critical size,
its free energy will decrease as further growth of the crystal takes place. Classical nucleation
theory (CNT) provides a simple, thermodynamic description of the free energy of a crystal
nucleus. In CNT theory the free energy of a nucleus contains two terms, a bulk and a surface
term. The bulk term takes care of the fact that the chemical potential of the solid phase is
lower than that of the liquid phase. The gain in free energy if N particles transform from
the liquid to the solid phase is N �µ, where �µ = µliq − µsol is the difference in chemical
potential between the liquid and the solid phase. The surface term, Aγ , describes the free
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energy required to create a liquid/solid interface of area A, where γ is the interfacial free
energy per unit area. For small nuclei the surface term dominates and the free energy of the
nucleus increases as it grows. When the nucleus is at its critical size ncrit the function goes
through a maximum:

�G∗ = 16π

3
γ 3/(ρs |�µ|)2, (2)

where ρs is the number density of the solid phase. For larger nuclei, the free energy goes down
again because it is dominated by the (negative) bulk term −�µ. The steady-state nucleation
rate per unit volume, I , is the product of the probability that a critical nucleus is formed,
Pcrit = exp[−β �G∗], times a kinetic factor, 	, which describes the rate with which a critical
nucleus growths:

I = 	 exp[−β �G∗]. (3)

In order to be able to compare our results with experiments, we express the crystallization rates
in dimensionless form: I ∗ ≡ Iσ 5/D0, where D0 is the self-diffusion coefficient at infinite
dilution. Such an expression for the reduced rate follows logically if all distances are expressed
in units of σ and time is expressed in units of σ 2/D0. In addition, we choose kB T as our unit
of energy. Other choices are possible (e.g. ε). However, the present choice facilitates the
comparison with earlier hard-sphere results [19]. In the following we will always use reduced
quantities and hence we omit the asterisk.

We performed calculations of the nucleation barrier, kinetic prefactor and nucleation rate
as a function of supersaturation varying both parameters of the Yukawa potential βε and κ .
In [6], the phase diagram has been computed as a function of βε for κ = 5 and as a function
of κ for βε = 8. We chose to study the same range of parameters. As was already mentioned
above, in experiments, κ and ε are usually varied simultaneously. Hence, in order to compare
with experiments, we have to combine and interpolate data from both sets of simulations.

One aspect of particular interest is the effect of the fcc–bcc–liquid triple point on the
nucleation pathway. Already in 1897, Ostwald [20] had formulated his famous ‘step rule’.
This rule states that the phase that nucleates from the melt need not be the most stable solid
phase, but is rather the one that is closest in free energy to the metastable liquid phase. Stranski
and Totomanow [21] re-examined this rule and argued that the nucleated phase is the one that
has the lowest nucleation barrier. Alexander and McTague [22] extended the Landau free-
energy expansion to freezing transitions that are weakly first order and concluded from general
symmetry considerations that, in three dimensions, formation of the body-centred cubic (bcc)
nuclei is uniquely favoured for simple fluids. However, simulations by ten Wolde et al [23]
showed that the situation is more subtle, at least for the Lennard-Jones system: the core of the
critical nucleus has the same structure as the stable crystal phase (fcc), but the surface bears a
structural resemblance to the bcc phase that, for Lennard-Jones systems, is not stable. In the
present system, we can ‘tune’ the relative stability of the fcc and bcc solids by moving past the
triple point. Hence, this is an ideal system in which to study nucleation of a metastable phase.

3. Simulations

For the calculation of the nucleation barrier we used a biased Monte Carlo method [19, 23].
With this method we can compute the equilibrium probability P(n) for the formation of a
cluster of size n. This probability is related to the free energy of a crystalline cluster consisting
of n particles: �G(n) = constant − ln[P(n)]. We first computed the nucleation barrier at
fixed κ = 5 for four different values of the amplitude of the Yukawa repulsion βε = 2, 6, 8
and 20. Increasing the contact value βε of the Yukawa repulsion shifts the volume fraction of
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Table 1. Excess free energy per particle for the different bulk structures and the liquid state
calculated via a thermodynamic integration in the limit of infinite number of particles [25]. The
reference state for the free-energy calculation of the liquid was the hard-sphere fluid, and for the
bulk solid structures we used an Einstein crystal. In some cases we also used the hard-sphere
system as a reference state for the solid structures. We found that the solid free energies obtained
via these two distinct routes agreed to within ±0.005 kB T , which corresponds to our estimate of
the statistical error in this calculation. The statistical accuracy of the computed free energy of the
liquid is estimated to be ±0.01 kB T . In the table, the values in brackets indicate the volume fraction
at which the excess free energy was calculated. The calculated excess free energies for the fcc and
the hcp structures can be compared directly, as they were calculated at the same pressure, whereas
the others are not. The fcc–hcp free-energy difference is always smaller than 1 × 10−2 kB T .

f f cc fhcp fbcc fliquid

βε = 2 12.894 12.892 — 11.38
κ = 5 (0.5425) (0.5425) — (0.5032)

βε = 6 23.258 23.256 21.49 19.11
κ = 5 (0.5027) (0.5027) (0.4808) (0.4503)

βε = 8 24.344 24.35 24.32 22.23
κ = 5 (0.4563) (0.4563) (0.4558) (0.4329)

βε = 20 20.872 20.873 20.986 16.16
κ = 5 (0.2888) (0.2888) (0.2895) (0.2529)

βε = 8 11.144 11.147 11.067 10.02
κ = 10 (0.4084) (0.4084) (0.4054) (0.3853)

βε = 8 39.107 39.110 — 38.08
κ = 3.333 33 (0.5168) (0.5168) — (0.5055)

the liquid phase at freezing to lower values than the hard-sphere value η = 0.494. In order
to be able to interpret our numerical data on the free-energy barrier for crystal nucleation,
we need an accurate estimate of the density, pressure and chemical potential of the liquid at
freezing. The data of [6] were obtained using a (modified) Gibbs–Duhem integration method.
While this technique is useful to estimate the location of solid–liquid coexistence curves, the
computed coexistence data were not sufficiently accurate for the present purpose. We therefore
computed the location of all coexistence points by direct free-energy calculation of the solid
and liquid phases [24]. The results for the excess free energy per particle are summarized
in table 1. From the computed free energies, we obtain estimates for the chemical potential
at freezing that have an error of ±0.01 kB T . We found the following values for the volume
fraction of the liquid phase at freezing: η = 0.482, 0.438, 0.405 and 0.262 for βε = 2, 6, 8
and 20, respectively (see table 2).

3.1. Nucleation barriers

In figure 3 we show the results for the barrier height as a function of supersaturation with respect
to the stable solid phase (fcc). As the figure shows, the main effect of increasing the strength
of the Yukawa repulsion is to lower the nucleation barrier at constant supersaturation �µ.

Note that the decrease of the height of the nucleation barrier is particularly strong when
only a weak repulsion is added to the hard-core potential. In particular, switching on a repulsive
Yukawa potential with a contact value of only 2 kB T decreases the nucleation barrier by some
10 kB T . This implies that for real hard-sphere colloids, the presence of only a small amount
of charge can enhance the nucleation rate at constant volume fraction by many orders of
magnitude through two mechanisms. First of all, the charge increases the supersaturation
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Figure 3. Calculated barrier heights of the hard-core Yukawa system with κ = 5 and βε =
2, 6, 8, 20 plotted as a function of supersaturation �µ of the liquid phase with respect to the stable
fcc phase.

Table 2. Summary of the data for the calculations with the repulsive hard-core Yukawa potential.
Here P is the pressure and ηliq , η f cc, ηbcc the corresponding volume fractions of the liquid, fcc
phase and bcc phase. �µ f cc and �µbcc are the differences in chemical potential between the
liquid and the fcc/bcc phases. The �G∗ are the measured crystallization barriers. f +

ncrit
/D0 is the

reduced rate of attachment of particles to the critical cluster. I is the calculated reduced nucleation
rate.

P ηliq η f cc ηbcc �µ f cc �µbcc �G∗ f +
ncrit

/D0 log10(I )

κ = 5 25 0.5103 0.5420 — 0.28 — 41 46 −19.1
and 26 0.5159 0.5484 — 0.34 — 29 84 −13.5
βε = 2 27 0.5218 0.5551 — 0.40 — 21 6 −11.1

28 0.5257 0.5599 — 0.46 — 15.5 19 −8.1

κ = 5 37 0.4714 0.4827 0.4808 0.19 0.15 48.1 202 −19
and 38 0.4755 0.4864 0.4848 0.22 0.17 34 57 −16.1
βε = 6 42 0.4903 0.5031 0.5004 0.32 0.25 16.6 52 −8.3

κ = 5 38 0.4415 0.4487 0.4481 0.17 0.15 43 218 −19.5
and 40 0.4491 0.4563 0.4558 0.21 0.19 31 200 −14.3
βε = 8 43 0.4596 0.4671 0.4668 0.26 0.24 19.1 300 −8.8

κ = 5 23 0.2859 0.2888 0.2895 0.15 0.14 39.1 167 −18.2
and 25 0.2938 0.2973 0.2974 0.19 0.19 30.4 58 −14.8
βε = 20 28 0.3048 0.3084 0.3083 0.25 0.25 19.1 53 −9.7

κ = 10 18 0.3848 0.3978 0.3949 0.23 0.15 49 80 −22.6
and 20 0.3955 0.4084 0.4054 0.32 0.21 26.5 44 −13
βε = 8 22 0.4054 0.4180 0.4150 0.40 0.28 15.2 11 −8.5

κ = 3.333 33 57 0.4937 0.5042 — 0.24 — 31.5 205 −14.4
and 59 0.4996 0.5106 — 0.28 — 22.5 81 −10.8
βε = 8 61 0.5055 0.5168 — 0.33 — 15.8 80 −7.7

at constant density. This effect would shift the nucleation curve to lower densities. But, in
addition, the charge lowers the nucleation barrier at constant supersaturation. Further increase
of the strength of the Yukawa repulsion leads to some additional decrease of the nucleation
barrier, but the effect seems to saturate for values of βε between 8 and 20.
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Figure 4. Calculated barrier heights of the hard-core Yukawa system with βε = 8 and
κ = 10, 5, 3.333 33 plotted as a function of supersaturation �µ of the liquid phase with respect to
the stable fcc phase.

Let us next consider the effect of the range of the repulsive potential on the nucleation
barrier. We computed the height of the crystallization barrier for κ = 10, 5 and 3.333 33
at a fixed contact value βε = 8. In addition, we know the behaviour of the system in the
hard-sphere limit (κ = ∞). As κ is decreased, the range of the potential grows. Initially (as
κ is decreased from ∞ to 10), the density at which the liquid freezes shifts from η = 0.494
to 0.354. Subsequently, the freezing density increases again. For κ = 5, the volume fraction
at freezing is η = 0.405 and for κ = 3.333, the liquid freezes at η = 0.456. The variation of
the crystallization barrier with κ and �µ is shown in figure 4. The figure shows that increasing
the range of the repulsive interaction, at constant supersaturation, initially has the effect of
lowering the nucleation barrier. However, as κ is decreased below 5, the nucleation barrier
starts to increase again.

From the CNT expression for the height of the nucleation barrier, equation (2), we can
estimate the corresponding values for the liquid/fcc interfacial free energy γ f cc. In figure 5 we
show the variation of the interfacial free energy with βε at fixed κ . Figure 6 shows the variation
of the interfacial free energy with κ at fixed βε for various values of the supersaturation �µ.
The dependence of the interfacial free energy on the range of repulsion mirrors that of the
nucleation barrier and is therefore non-monotonic. Coming from the hard-sphere limit, the
interfacial free energy initially goes down, but for κ < 5, it increases again.

In [19, 26] we found that, for hard spheres, the interfacial free energy γ increases
with supersaturation �µ. As can be seen in figure 6, such behaviour is also observed in a
system of charged colloids. In polydisperse hard-sphere systems [26], the increase of γ with
supersaturation could even result in a non-monotonic dependence of the nucleation barrier
on supersaturation. In the present system, the interfacial free energy also increases with
supersaturation, but the effect is not strong enough to result in a minimum in the nucleation
barrier.

3.2. Nucleation rates

In order to calculate the absolute nucleation rate, equation (3), we need to evaluate the
kinetic prefactor, which has the following form: 	 = Zρl f +

ncrit
(σ 5/D0) [28]. Here Z is
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Figure 5. Interfacial free energy calculated from the barrier heights equation (2) for κ = 5 and
βε = 2, 6, 8, 20. The solid lines are the results assuming that the nuclei have a fcc structure, and
the dashed lines are the results if the nuclei are bcc.
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Figure 6. Interfacial free energy calculated from the barrier heights equation (2) for βε = 8 and
κ = 10, 5, 3.333 33. The solid lines are the results assuming that the nuclei have a fcc structure,
and the dashed lines are the results if the nuclei are bcc.

the Zeldovich factor, ρl the number density of the liquid phase and f +
ncrit

the rate of attachment
of particles to the critical cluster. D0 denotes the diffusion coefficient of the charged colloids
at infinite dilution and σ is the hard-core diameter of the Yukawa particles. The Zeldovich
factor Z = [|�G ′′(ncrit )|/(2πkT )]2 depends only on the second derivative of the nucleation
barrier at its maximum. This information we obtain directly from our numerical results for
�G(n). In order to compute f +

ncrit
/D0, we used the kinetic Monte Carlo scheme of [29].

Basically, the method is a numerical scheme for solving the Smoluchowski equation. In
doing this, we neglected the hydrodynamic interactions between the colloids. This drawback
can be remedied by using the solution suggested by Medina-Noyola [30]. In this approach,
the hydrodynamic interactions are taken into account through their effect on the short-time
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Figure 7. Dependence of the crystallization rates on the amplitude of the Yukawa repulsion
βε = 2, 6, 8, 20 for κ = 5 plotted as a function of supersaturation �µ of the liquid with respect
to the stable fcc phase.

self-diffusion coefficient. In practice, this means that we assume that, at short times, the
mean squared displacement of a particle is not dominated by the infinite-dilution value of the
diffusion coefficient D0, but by the short-time self-diffusion coefficient DS

S . The latter quantity
differs from D0 precisely because of hydrodynamic interactions. We therefore need to know
the value of the ratio DS

S /D0 at the liquid density of interest. For hard-sphere suspensions,
approximate expressions exist for the density dependence of DS

S /D0, e.g. (1−η/0.64)1.17 [31].
As a test of this procedure, we used it to estimate the long-time self-diffusion coefficient of
dense hard-sphere suspensions. The results agree within the statistical error with the available
experimental data [32]. This gives us confidence that a similar approach can also be used to
compute nucleation rates. However, the Medina-Noyola procedure is not directly applicable
to the Yukawa system. To resolve this problem, we assumed that we could map the dynamics
of the Yukawa system onto that of the hard-sphere system. To this end, we defined an effective
packing fraction of the Yukawa system such that the packing fractions at freezing of the
two systems were equal. This mapping is inspired by the observation of Löwen et al [33]
that for many different colloidal systems, the ratio DS

L/DS
S has a ‘universal’ value of 0.1 at

freezing (here DS
L is the long-time self-diffusion constant). This rule suggests a dynamic

‘corresponding-states principle’ provided all densities are scaled to the freezing density. In
fact, experiments by van Blaaderen et al [34] suggest that, for dense, charged colloids such a
rescaling of the long-time self-diffusion coefficient is justified. While this approach is rather
ad hoc, the systematic errors that it might induce are smaller than the random errors due to
statistical inaccuracies in the determination of the height of the nucleation barrier.

3.2.1. Results. Our results for the computed nucleation rates are shown in figures 7 and 8,
where we plot the nucleation rate as a function of supersaturation. As the kinetic prefactor
does not vary strongly with either supersaturation or interaction potential, the variation of the
nucleation rate shown in figures 7 and 8 reflects the behaviour of the barrier height.

In order to compare the computed crystallization rates with the results of the confocal
microscopy experiments of [16], we need to know the potential parameters that best characterize
the experimental system that they used. From the fact that the suspensions studied by Gasser
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Figure 8. Dependence of the crystallization rates on the inverse screening length κa =
10, 5, 3.333 33 for βε = 8 plotted as a function of supersaturation �µ of the liquid with respect
to the stable fcc phase.

et al freeze at a volume fraction η = 0.38, it is clear that the colloidal particles used in these
experiments are slightly charged. It is therefore natural to describe them by a Yukawa model
that also has its freezing point at η = 0.38. This condition is, however, not sufficient to fix
the values of both κ and ε. For instance, if κ = 5, then the observed freezing density can be
reproduced by choosing βε ∼ 7. Conversely, if we choose βε = 8, then there are in fact two
values of κ that will reproduce the observed freezing density (κ ∼ 20 and 6) [6].

In figure 9, we show a comparison of the nucleation rates reported in [16] with the
simulation results for those κ–βε combinations that yield a freezing point near η = 0.38.
As can be seen from the figure (and from the numbers collected in table 2), different κ–βε

combinations yield very different nucleation rates. However, the main effect of the variation
of κ and ε is to shift the nucleation curves horizontally: the slopes of the different curves
are all rather similar. When we compare the computed nucleation rates with the experimental
data, we note two things: first of all, the experimental rates tend to be (much) higher than the
computed rates (Gasser et al find −6.9 � log[I ] � −6.5 for η between 0.45 and 0.53). But,
more importantly, the experiments suggest that the nucleation rate barely varies with volume
fraction. This observation is hard to reconcile with the behaviour of any of the Yukawa models
that we studied.

This discrepancy between experiment and simulation results suggests that it is incorrect
to assume that the experimental system can be mapped onto a Yukawa model with density-
independent κ and ε. On the contrary, it is very likely that the effective potential parameters
of weakly charged colloids in the absence of added salt depend strongly on concentration.
In fact, recent experiments by Schöpe et al [17] clearly illustrate this effect: with increasing
concentration, the effective potential of charged polystyrene spheres in dilute aqueous solution
becomes increasingly hard-sphere-like. If we assume that the same phenomenon occurs in
the more concentrated suspensions of [16], then experimental results for the nucleation rates
at different densities should be compared with the numerical predictions that correspond to
different effective Yukawa potentials.

As can be seen from figure 9, the variation of the nucleation rate with density can be strongly
reduced (and can possibly even become non-monotonic) if, as we expect, ε and κ decrease with
density. It is, however, not obvious that this effect is large enough to account for the apparent
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Figure 9. Comparison between the experimentally measured nucleation rates [16] and the
simulation data. In the plot we added only the data sets which match the freezing density of
the experimental system.

discrepancy between experiment and simulation. Clearly, a truly quantitative comparison
between simulation and experiment requires better knowledge of the density dependence of
the effective interaction between slightly charged colloidal spheres.

3.3. Nucleation pathways

The repulsive Yukawa system offers a unique opportunity to study the effect of metastable
crystal phases on the pathway for crystal nucleation. The role of metastable phases in crystal
nucleation was first pointed out by Ostwald [20] who, in 1897, formulated his ‘step rule’. This
rule states that the crystal phase that is nucleated from solution need not be the one that is
thermodynamically most stable, but is the one that is closest in free energy to the fluid phase.
Stranski and Totomanow [21] re-examined this rule and argued that the nucleated phase is the
phase that has the lowest free-energy barrier of formation, rather than the phase that is globally
stable under the conditions prevailing. More recently, Alexander and McTague [22] argued,
on the basis of Landau theory, that in the early stages of crystal nucleation the formation of
bcc crystallites should be favoured. Similar conclusions were subsequently reached by other
groups [35, 36]. In the Yukawa system, the fluid phase can coexist with either the fcc or the
bcc phase, depending on the values of κ and βε (see figure 2). We can therefore study crystal
nucleation both in the regime where the fcc phase is stable, and where the bcc phase is stable.
If Ostwald’s rule applied strictly, we should expect fcc nuclei to form where bcc crystals are
stable, and conversely. On the other hand, if the Alexander–McTague scenario is correct, we
should expect to find that bcc nuclei are always preferred. There is little point in testing the
Stranski–Totomanow hypothesis as it amounts almost to a tautology (‘the phase that nucleates
fastest is the one with the lowest nucleation barrier’).

To study the effect of metastable intermediates on crystallization,we analysed the structure
of the (pre-)critical nucleus in different regions of the phase diagram shown in figure 2. As can
be seen from figure 2, the pressure range region where the bcc phase is stable is rather narrow.
For these pressures, the supersaturation of the fluid phase is small, and hence the nucleation
barrier is very high. As a consequence, we could only study the formation of pre-critical
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Figure 10. Structure analysis of two independent crystal nuclei of size n = 100 and 200 from the
simulations with parameters βε = 8 and κ = 10. The figure shows the results for the fit parameters
for the local bond-order analysis as a function of the distance from the centre of mass of the nuclei.
The core of the cluster of size n = 100 has a clear bcc signature, where the cluster of size n = 200
shows a clear fcc structure.

nuclei in this regime. In order to study the structure of the (pre-)critical nuclei, we used the
local bond-order analysis proposed by ten Wolde et al [23]. In this analysis the local bond-
order signature of a nucleus is decomposed into the signatures of the different bulk structures
(liquid, fcc and bcc) using a linear least-squares fit. The values of the resulting coefficients
{ fliq , f f cc, fbcc} are a measure of the structure of the nucleus.

Our simulations show that the pre-critical nuclei always have a strong bcc signature. Only
for larger (post-)critical nuclei well inside the fcc regime do we find a mixture of bcc and fcc
signatures. In this sense, our simulations unambiguously support the prediction that nucleation
into bcc nuclei is always uniquely favoured, even when the fcc phase is closer in free energy
to the fluid phase.

Figure 10 shows the results of our cluster analysis for two distinct nuclei of size n = 100
and 200. The picture shows the variation of the structural signature with the distance from the
centre of mass of the nucleus. The results shown in this figure apply to the case of κ = 10
and βε = 8. This corresponds to the points in the phase diagram where the preference for the
fcc structure is strongest. The core of the cluster of size n = 100 has a clear bcc signature
while the fcc phase does not seem to play a role. However, for the larger nuclei (n = 200)
the core of the nuclei becomes fcc-like while the bcc phase seems to disappear. In this case
the cluster transformation happened before it could reach critical size. This phase transition
in the pre-critical nucleus allows us to quantify what value of the bcc–fluid interfacial free
energy is needed in order to compensate for the difference in chemical potential of the two
bulk structures. From our free-energy calculations, we deduce µbcc − µ f cc = 0.082 ± 0.005.
We used the CNT expression for the barrier height to estimate the fcc–liquid interfacial free
energy: γ f cc = 0.446. The transformation from bcc to fcc nuclei occurred for n ≈ 100. At
that point, the gain in bulk free energy is 100 × 0.082 = 8.2 kB T . This free-energy gain
must be compensated by the increase in surface free energy as the crystallite transforms from
bcc to fcc. To estimate this surface free energy, we need to know the radius of the crystal
nucleus for n = 100. If we assume that the nucleus is spherical and that the solid is effectively
incompressible, we arrive at the estimate γbcc = 0.379.
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We find such a pre-critical transformation from bcc to fcc for βε = 2 with κ = 5, and for
βε = 8 with κ = 10 and 3.333 33. In all the other cases (βε = 6, 8, 20 with κ = 5) even the
critical nuclei had a strong bcc signature. This observation has implications for the interfacial
free energies shown in figures 5 and 6. In these figures, we show interfacial free energies that
were computed from the CNT expression for the barrier height, assuming that the nucleus had
the same structure as the stable crystal phase. We now see that, in some cases, the critical
nucleus has a metastable bcc structure. This affects the value for �µ in the CNT expression,
and hence our estimate for γ . In the cases where the critical nucleus has a bcc structure, we
therefore also estimated the value of γbcc from the height of the nucleation barrier. The results
are also shown in figures 5 and 6.

Thus far we have not mentioned the possibility that the structure of the crystal nuclei could
also be hexagonal closed packed (hcp) or a random stacking of the fcc and hcp domains (rhcp).
In the case of hard spheres it is known that the free-energy difference between the stable fcc
and hcp solid structure is very small (≈10−3 kB T ) and therefore stacking faults are expected.
Such stacking faults have been observed in experiments and computer simulations. In the case
of charged spheres the situation is less clear. Some experiments indicate that the situation
changes and there seems to be tendency for crystal nuclei to become more fcc-like [37]. Other
experiments suggest that the structure of the cluster is still rhcp [16]. To resolve this question
for the present model system, we first calculated the free-energy difference between the fcc
and hcp solid, for all the different parameters of the model potential for which we performed
rate calculations. It turns out that the free-energy difference per particle between the fcc
and hcp structure was always smaller than 1 × 10−2 kB T (see table 1), which is about the
limit of the accuracy that we had in our calculations. This means that thermal fluctuations
of the order of a few kB T could easily transform clusters containing hundreds of particles
from fcc to hcp, or generate intermediate stackings. To find out whether this really happens,
we analysed the stacking of the (111) planes of ten nuclei with parameters βε = 8, κ = 10
and βε = 8, κ = 3.333 33. In both cases, we do find stacking faults, but they seem to be
less frequent than in the pure hard-sphere case. We stress, however, that these preliminary
conclusions are based on the analysis of only a small number of crystallites.
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[18] Schöpe H J and Palberg T 2002 J. Noncryst. Mater. at press
[19] Auer S and Frenkel D 2001 Nature 409 1020
[20] Ostwald W 1897 Z. Phys. Chem. 22 289
[21] Stranski I N and Totomanow D 1933 Z. Phys. Chem. 163 399
[22] Alexander S and McTague J P 1978 Phys. Rev. Lett. 41 702
[23] ten Wolde P R, Ruiz-Montero M J and Frenkel D 1995 Phys. Rev. Lett. 75 2714
[24] Frenkel D and Smit B 2002 Understanding Molecular Simulation: from Algorithms to Applications 2nd edn

(New York: Academic)
[25] Polson J M, Trizac E, Pronk S and Frenkel D 2000 J. Chem. Phys. 112 5339
[26] Auer S and Frenkel D 2001 Nature 413 711
[27] Pusey P N and van Megen W 1986 Nature 320 340
[28] Kelton K F 1991 Solid State Physics vol 45 (New York: Academic)
[29] Hinsen K and Cichocki B 1990 Physica A 166 473
[30] Medina-Noyola M 1988 Phys. Rev. Lett. 60 2705
[31] Van Duijneveldt J S and Lekkerkerker H N W 1995 Science and Technology of Crystal Growth ed J P van der

Eerden and O S L Bruinsma (Dordrecht: Kluwer Academic)
[32] Auer S and Frenkel D 2002 in preparation
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